[ Pobierz całość w formacie PDF ]
.d12.2 PD Control plus Feedforward 275Üwhere tanh(q) is the vectorial tangent hyperbolic function (12.10) and ³ >0is a given constant.To show that the Lyapunov function candidate (12.14) is positive definiteand radially unbounded, we first observe that the third term in (12.14) satisfiesM(q)qÙ ÙÜ Ü Ü³tanh(q)T M(q)q d" ³ tanh(q) ÜÙÜ Üd" ³ »Max{M} tanh(q) qÙÜ Üd" ³ ±1»Max{M} q qÜ Üwhere we used tanh(q) d"±1 q in the last step.From this we obtainqÙ ÙÜ Ü Ü-³tanh(q)T M(q)q e"-³ ±1»Max{M} q Ü.Therefore, the Lyapunov function candidate (12.14) satisfies the followinginequality:¡# ¤#T ¡# ¤#Ü Üq q»min{Kp} -³ ±1 »Max{M}1Ù£# ¦# £# ¦#Ü ÜV (t, q, q) e"q q2 Ù ÙÜ-³ ±1 »Max{M} »min{M} Üand consequently, it happens to be positive definite and radially unboundedsince by assumption, Kp is positive definite (i.e.»min{Kp} > 0) and we alsosupposed that it is chosen so as to satisfy (12.13).Following similar steps to those above one may also show that the Lya-ÙÜ Üpunov function candidate V (t, q, q) defined in (12.14) is bounded from aboveby¡# ¤#T ¡# ¤#Ü Üq q»Max{Kp} ³ ±1 »Max{M}1Ù£# ¦# £# ¦#Ü ÜV (t, q, q) d"q q2 Ù ÙÜ ³±1 »Max{M} »Max{M} Üwhich is positive definite and radially unbounded since the condition2»Max{Kp} >³2±1 »Max{M}ÙÜ Üis trivially satisfied under hypothesis (12.13) on Kp.This means that V (t, q, q)is decrescent.Time DerivativeThe time derivative of the Lyapunov function candidate (12.14) along thetrajectories of the closed-loop system (12.7) is276 12 Feedforward Control and PD Control plus FeedforwardT 1 TÙ Ù Ù Ù Ù Ù Ù ÙÜ Ü Ü Ü Ü Ù Ü Ü Ü Ü ÜV (t, q, q) = q -Kpq - Kvq - C(q, q)q - h(t, q, q) + q @(q)q2TÙ Ù Ù ÙÜ Ü Ü Ü Ü Ü Ü+ qT Kpq + ³q Sech2(q)T M(q)q + ³tanh(q)T @(q)qÙ Ù ÙÜ Ü Ü Ù Ü Ü Ü+ ³tanh(q)T -Kpq - Kvq - C(q, q)q - h(t, q, q).1Using Property 4.2 which establishes the skew-symmetry of @ - C and2Ù Ù@(q) = C(q, q) +C(q, q)T , the time derivative of the Lyapunov functioncandidate yieldsT TÙ Ù Ù Ù Ù ÙÜ Ü Ü Ü Ü Ü Ü Ü ÜV (t, q, q) =-q Kvq + ³q Sech2(q)T M(q)q - ³tanh(q)T KpqÙ ÙÜ Ü Ü Ù Ü- ³tanh(q)T Kvq + ³tanh(q)T C(q, q)T qTÙ Ù ÙÜ Ü Ü Ü Ü Ü- q h(t, q, q) - ³ tanh(q)T h(t, q, q).(12.15)Ù ÙÜ ÜWe now proceed to upper-bound V (t, q, q) by a negative definite functionÙÜ Üin terms of the states q and q.To that end, it is convenient to find upper-bounds for each term of (12.15).The first term of (12.15) may be trivially bounded byTÙ Ù ÙÜ Ü Ü-q Kvq d"-»min{Kv} q 2.(12.16)To upper-bound the second term of (12.15) we first recall that theÜvectorial tangent hyperbolic function tanh(q) defined in (12.10) satisfiesSech (q)q d" ±4 q2Ù ÙÜ Ü Ü with±4 > 0.From this, it follows thatTq 2Ù Ù ÙÜ Ü Ü³q Sech2(q)T M(q)q d" ³±4 »Max{M} Ü.On the other hand, notice that in view of the fact that Kp is a diagonalÜ Ü Üpositive definite matrix, and tanh(q) 2 d" ±3 tanh(q)T q, we getÜ Ü Ü³ ±3 tanh(q)T Kpq e" ³»min{Kp} tanh(q) 2which finally leads to the important inequality,»min{Kp}Ü Ü Ü-³tanh(q)T Kpq d"-³ tanh(q) 2.±3ÙÜ ÜA bound on ³tanh(q)T Kvq is obtained straightforwardly and is given byqÙ ÙÜ Ü Ü³tanh(q)T Kvq d" ³»Max{Kv} Ü tanh(q).ÙÜ Ù ÜThe upper-bound on the term ³tanh(q)T C(q, q)T q must be carefully cho-sen.Notice that12.2 PD Control plus Feedforward 277TÙ ÙÜ Ù Ü Ü Ù Ü³tanh(q)T C(q, q)T q = ³q C(q, q)tanh(q)qÙÙ Üd" ³ Ü C(q, q)tanh(q).Considering again Property 4.2 but in its variant that establishes the existenceof a constant kC such that C(q, x)y d"kC x y for all q, x, y " IRn,1 1we haveÙ ÙÜ Ù Ü Ü Ù Ü³tanh(q)T C(q, q)T q d" ³kC q q tanh(q) ,1Ù ÙÜ Ù Ü Üd" ³kC q qd - q tanh(q) ,1ÙÜ Ù Üd" ³kC q qd tanh(q)1Ù ÙÜ Ü Ü+³kC q q tanh(q).1Ü ÜMaking use of the property that tanh(q) d"±2 for all q " IRn, we getÙ Ù ÙÜ Ù Ü Ù Ü Ü Ü³tanh(q)T C(q, q)T q d" ³ kC qd M q tanh(q) + ³±2 kC q 2.1 1At this point it is only left to find upper-bounds on the two terms whichÙcontain h(t, q, q).This study is based on the use of the characteristics es-ÙÜ Ütablished in Property 4.4 on the vector of residual dynamics h(t, q, q), whichindicates the existence of constants kh1, kh2 e" 0 which may be computedby (4.24) and (4.25) such that the norm of the residual dynamics satisfies(4.15),h(t, q, q) d" kh1 qÙ ÙÜ Ü Ü + kh2 tanh(q).ÜTÙ ÙFirst, we study the term -q h(t, q, q):Tq h(t,Ù Ù Ù Ù-q h(t, q, q) d" q, q) ,Ù ÙÜd" kh1 q 2 + kh2 q tanh(q).The remaining term satisfiesh(t, ÙÙ-³tanh(q)T h(t, q, q) d" ³ tanh(q) q, q) ,ÙÜd" ³ kh1 q tanh(q) + ³ kh2 tanh(q) 2.(12.17)Ù ÙÜ ÜThe bounds (12.16) (12.17) yield that the time derivative V (t, q, q) in(12.15), satisfies278 12 Feedforward Control and PD Control plus FeedforwardÙÜ ÙV (t, q, q) d"¡# ¤#T »min{Kp} 1 kh2- kh2 -a -Ü Ütanh(q) tanh(q)¢# ±3¥#³ 2-³£# ¦#1 kh2 1Ù Ùq q-a - [»min{Kv}-kh1] - b³ 2 ³R(³)(12.18)where1Ùa = [»Max{Kv} + kC qd M + kh1] ,12b = ±4 »Max{M} + ±2 kC.1According to the theorem of Sylvester, in order for the matrix R(³) to bepositive definite it is necessary and sufficient that the component R11 and thedeterminant det{R(³)} be strictly positive.With respect to the first conditionwe stress that the gain Kp must satisfy»min{Kp} e"±3 kh2.(12.19)On the other hand, the determinant of R(³) is given by1 »min{Kp}det{R(³)} = - kh2 [»min{Kv}-kh1]³ ±32»min{Kp} 1 kh2- - kh2 b - a +.±3 ³ 2The latter must be strictly positive for which it is necessary and sufficientthat the gain Kp satisfies[2 ³ a + kh2]2»min{Kp} >±3 + kh2 (12.20)4 ³ [»min{Kv}-kh1 - ³b]while it is sufficient that Kv satisfies»min{Kv} >kh1 + ³ b (12.21)for the right-hand side of the inequality (12.20) to be positive.Observe thatin this case the inequality (12.19) is trivially implied by (12.20).Notice that the inequalities (12.21) and (12.20) correspond precisely tothose in (12.11) and (12.12) as the tuning guidelines for the controller.ThisÙ ÙÜ Ümeans that R(³) is positive definite and therefore, V (t, q, q) is globally nega-tive definite.According to the arguments above, given a positive constant ³ we maydetermine gains Kp and Kv according to (12.11) (12.13) in a way that the12.2 PD Control plus Feedforward 279ÙÜ Ù Ü Ùfunction V (t, q, q) given by (12.14) is globally positive definite while V (t, q, q)Ü Ùexpressed as (12.18) is globally negative definite.For this reason, V (t, q, q) is astrict Lyapunov function.Theorem 2.4 allows one to establish global uniformasymptotic stability of the origin of the closed-loop system.Tuning ProcedureThe stability analysis presented in previous sections allows one to obtain atuning procedure for the PD control law plus feedforward.This method deter-mines the smallest eigenvalues of the symmetric design matrices Kp and Kv with Kp diagonal which guarantee the achievement of the motion controlobjective.The tuning procedure may be summarized as follows." Derivation of the dynamic robot model to be controlled.Particularly, com-Ùputation of M(q), C(q, q) and g(q) in closed form
[ Pobierz całość w formacie PDF ]